A Distributed Parameter Electromechanical Model for Cantilevered Piezoelectric Energy Harvesters

نویسندگان

  • A. Erturk
  • D. J. Inman
چکیده

Cantilevered beams with piezoceramic layers have been frequently used as piezoelectric vibration energy harvesters in the past five years. The literature includes several single degree-of-freedom models, a few approximate distributed parameter models and even some incorrect approaches for predicting the electromechanical behavior of these harvesters. In this paper, we present the exact analytical solution of a cantilevered piezoelectric energy harvester with Euler–Bernoulli beam assumptions. The excitation of the harvester is assumed to be due to its base motion in the form of translation in the transverse direction with small rotation, and it is not restricted to be harmonic in time. The resulting expressions for the coupled mechanical response and the electrical outputs are then reduced for the particular case of harmonic behavior in time and closed-form exact expressions are obtained. Simple expressions for the coupled mechanical response, voltage, current, and power outputs are also presented for excitations around the modal frequencies. Finally, the model proposed is used in a parametric case study for a unimorph harvester, and important characteristics of the coupled distributed parameter system, such as short circuit and open circuit behaviors, are investigated in detail. Modal electromechanical coupling and dependence of the electrical outputs on the locations of the electrodes are also discussed with examples. DOI: 10.1115/1.2890402

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic Algorithm Optimization for Mems Cantilevered Piezoelectric Energy Harvesters

A design optimization based on genetic algorithms for increasing power output performance of MEMS piezoelectric cantilevered energy harvesters has been performed. By employing genetic algorithms, the piezoelectric energy scavenging system with optimized shape and lateral geometries of a unimorph cantilever beam and a proof mass is simulated to achieve a power response improvement of ~1.8× in co...

متن کامل

Improving Power Density of Piezoelectric Vibration-Based Energy Scavengers

Vibration energy harvesting with piezoelectric materials currently generate up to 300 microwatts per cm2, using it to be mooted as an appropriate method of energy harvesting for powering low-power electronics. One of the important problems in bimorph piezoelectric energy harvesting is the generation of the highest power with the lowest weight. In this paper the effect of the shape and geometry ...

متن کامل

On Mechanical Modeling of Cantilevered Piezoelectric Vibration Energy Harvesters

Cantilevered beams with piezoceramic (PZT) layers are the most commonly investigated type of vibration energy harvesters. A frequently used modeling approach is the single-degree-of-freedom (SDOF) modeling of the harvester beam as it allows simple expressions for the electrical outputs. In the literature, since the base excitation on the harvester beam is assumed to be harmonic, the well known ...

متن کامل

An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations

Piezoelectric transduction has received great attention for vibration-to-electric energy conversion over the last five years. A typical piezoelectric energy harvester is a unimorph or a bimorph cantilever located on a vibrating host structure, to generate electrical energy from base excitations. Several authors have investigated modeling of cantilevered piezoelectric energy harvesters under bas...

متن کامل

Transverse and longitudinal dynamic modeling of bimorph piezoelectric actuators with investigating the effect of vibrational modes

  Bimorph piezoelectric cantilevered (BPC) actuators have recently received a great deal of attention in a variety of micro-electromechanical systems (MEMS) applications. Dynamic modeling of such actuators needs to be improved in order to enhance the control performance. Previous works have usually taken transv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008